EMP and Its Impact on Electrical Power System: Standards and Reports

Dr. Vladimir Gurevich
Central Electric Laboratory, Israel Electric Corp., POB 10, Haifa 31000, Israel

Abstract: The purpose of the given publication is to give to civil specialists the information on accessible standards and reports in the field of EMP/HEMP which they can use at an estimation of danger of EMP for the power electrical and electronic equipment and development of means of protection.

Key words: high altitude electromagnetic pulse, HEMP, EMP, geomagnetically induced currents, GIC, intentional destructive electromagnetic impacts.

The problem of intentional destructive electromagnetic impacts on electronic and electric equipment became apparent a few years after the USA conducted a series of nuclear test explosions coded “Operation Crossroads” on Bikini Atoll in the Marshall Islands (3800 km south-west of Hawaii) in 1946. During those test explosions a new physical phenomenon was discovered: the emergence of a powerful impulse of electromagnetic emission, encompassing an extensive area, which immediately caught the attention of military men. From 1958 until 1962 both the USA and the Soviet Union conducted a series of high burst tests (40 to 450 km) in order to investigate this phenomenon. It was revealed that the High Altitude Electromagnetic Pulse (HEMP) can destroy electronic equipment, communication systems, radio-stations and radar from a distance of thousands kilometers from the center of the explosion. At that time information about this phenomenon was kept quiet. Recently, however, it has become known that since the 1980s several countries started to put their efforts into the development of a so-called “super-EMP” nuclear weapon, where the EMP (electromagnetic pulse) effect is significantly magnified compared to an ordinary nuclear weapon.

The problem of intentional destructive electromagnetic impacts on electrical power systems becomes recently more and more actual in connection with two modern trends: an extending application of microelectronics and microprocessor-based devices and systems in electric power industry - on the one hand, and intensive designs special equipment for distance destruction of electronic devices and systems - with another. The most powerful method for such destruction is the HEMP as a result of high-altitude nuclear explosion. The history of experimental high-altitude nuclear explosions includes already half a century. During this time many tens the scientific reports and standards in details presenting this phenomenon and measures of protection from it, have been published. But great part of these reports was not published widely and was not available for civilian engineers. Therefore, a civilian specialists working in the various technical sectors had no idea until recently about this phenomenon, or of the dangers that it posed (and some are still not aware even now).

Today, the most restricted before reports can be free downloaded from Internet, but the problem of civilian engineers is absence information about such reports and standards. Purpose of the article is informing civilian specialists in power engineering about lots of reports and standards which now available for use.

STANDARDS

1. Standards of International Electrotechnical Commission:

1.1 IEC TR 61000-1-3 Electromagnetic compatibility (EMC) — Part 1–3: General—The effects of high-altitude EMP (HEMP) on civil equipment and systems.

1.2 IEC 61000-1-5 High power electromagnetic (HPEM) effects on civil systems.

1.3 IEC 61000-2-9 Electromagnetic compatibility (EMC)—Part 2: Environment—Section 9: Description of HEMP environment—Radiated disturbance. Basic EMC publication.

1.4 IEC 61000-2-10 Electromagnetic compatibility (EMC)—Part 2–10: Environment—Description of HEMP environment—Conducted disturbance.

1.5 IEC 61000-2-11 Electromagnetic compatibility (EMC)—Part 2–11: Environment—Classification of HEMP environments.

1.6 IEC 61000-2-13 Electromagnetic compatibility (EMC)—Part 2–13: Environment—High power electromagnetic (HPEM) environments—Radiated and conducted.

1.7 IEC 61000-4-23 Electromagnetic compatibility (EMC) - Part 4-23: Testing and measurement techniques - Test methods for protective devices for HEMP and other radiated disturbances.
1.8 **IEC 61000-4-24** Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 24: Test methods for protective devices for HEMP conducted disturbance - Basic EMC Publication.

1.9 **IEC 61000-4-25** Electromagnetic compatibility (EMC) - Part 4-25: Testing and measurement techniques - HEMP immunity test methods for equipment and systems.

1.10 **IEC 61000-4-32** Electromagnetic compatibility (EMC) – Part 4-32: Testing and measurement techniques – High-altitude electromagnetic pulse (HEMP) simulator compendium.

1.11 **IEC61000-4-33** Electromagnetic compatibility (EMC) – Part 4 -33: Testing and measurement techniques – Measurement methods for high-power transient parameters.

1.12 **IEC 61000-4-35** Electromagnetic compatibility (EMC) - Part 4-35: Testing and measurement techniques - HPEM simulator compendium.

1.13 **IEC 61000-4-36** Electromagnetic compatibility (EMC) - Testing and measurement techniques - IEMI Immunity Test Methods for Equipment and Systems.

1.17 **IEC 61000-5-6** Electromagnetic compatibility (EMC) – Part 5-6: Installation and mitigation guidelines – Mitigation of external EM influences.

1.18 **IEC 61000-5-7** Electromagnetic compatibility (EMC) - Part 5-7: Installation and mitigation guidelines - Degrees of protection provided by enclosures against electromagnetic disturbances (EM code).

1.19 **IEC 61000-5-8** Electromagnetic compatibility (EMC) - Part 5-8: Installation and mitigation guidelines - HEMP protection methods for the distributed infrastructure.

1.20 **IEC 61000-5-9** Electromagnetic compatibility (EMC) - Part 5-9: Installation and mitigation guidelines - System-level susceptibility assessments for HEMP and HPEM.

1.21 **IEC 61000-4-36** Electromagnetic compatibility (EMC) - Testing and measurement techniques - IEMI Immunity Test Methods for Equipment and Systems.

2. **Standard of Institute of Electrical and Electronics Engineers (IEEE)**

2.1. **IEEE P1642** Recommended Practice for Protecting Public Accessible Computer Systems from Intentional EMI.

3. **Standard of European Commission**

3.1. **Topic SEC-2011.2.2-2** Protection of Critical Infrastructure (structures, platforms and networks) against Electromagnetic (High Power Microwave (HPM)) Attacks.

4. **Military Standards of USA**

4.1 **MIL-STD-2169B** High –Altitude Electromagnetic Pulse (HEMP) Environmental, 2012 (Classified).

4.6 **MIL-STD-1377** Effectiveness of Cable, Connector, and Weapon Enclosure Shielding and Filters in Precluding Hazards of Electromagnetic Radiation to Ordnance (HERO), 1971.

5. **Standards of NATO**

5.1 **NATO AECTP-500** Ed. 4. Electromagnetic Environmental Effects Test and Verification, 2011.

5.2 **NATO AECTP-250** Ed.2 – Electrical and Electromagnetic Environmental Conditions, 2011.
REPORTS

1. EMP Theory

2. Geomagnetically Induced Currents and its Impact on Power System

3. EMP Impact on Power System

3.43 Critical Infrastructure Protection Committee Strategic Plan. – North American Electric Reliability Corp. (NERC), 2012.

